SAS In-Memory Statistics for Hadoop: новые возможности высокопроизводительной аналитики

 | 23.30
>Анализ больших данных с помощью технологии in-memory, возможность использования широкого спектра аналитических алгоритмов для исследования и моделирования в распределенной среде Hadoop – это лишь некоторые из неоспоримых преимуществ, которые получат пользователи нового продукта SAS In-Memory Statistics for Hadoop, представленного компанией весной и поступившего в продажу в августе этого года.

>«Эти преимущества позволяют беспрецедентно сократить время обработки аналитических запросов при работе с большими данными, – комментирует Андрей Свирщевский, руководитель направлений аналитики и гарантирования доходов компании SAS. – Так, построить дерево решений на таблице объемом 467 GB с 520 колонками и 120 млн строк теперь можно всего за 10 минут, а случайный лес из 10 деревьев строится и вовсе за 4 минуты. На текущий момент это самый быстрый инструмент применения методов углубленной аналитики во всей линейке SAS».

>Пользователь SAS In-Memory Statistics for Hadoop получает доступ в режиме интерактивного программирования ко всем основным методам статистического анализа и машинного обучения. Среди них – линейная и логистическая регрессии, обобщенные линейные модели, деревья решений и случайный лес, прогнозирование временных рядов, анализ текстовых данных, кластеризация и др. При этом есть возможность выполнять вспомогательные и служебные задачи: готовить данные к анализу, выделять значимые предикторы, сравнивать модели, формировать код применения моделей. Новый продукт SAS позволяет сразу нескольким пользователям совместно изучать и анализировать данные, создавать и сравнивать модели, а также оперативно работать с большими объемами информации на базе технологии Hadoop.

>Сегодня многие компании прорабатывают бизнес-кейсы использования Hadoop. При этом важно иметь возможность применять самые разные методы анализа, включая углубленную аналитику, на огромных объемах данных, для которых потенциально предполагается использовать Hadoop – именно для таких задач идеально подходит этот продукт.

>Кроме того, представленная технология дает возможность строить Рекомендательные Системы, используя большой набор методов их построения. Такие системы востребованы для решения широкого класса бизнес-задач, в том числе целевого маркетинга. На основе анализа информации о том, какими продуктами и услугами воспользовался или пользуется каждый клиент, определяются типовые профили потребления продуктов и услуг, на выходе для каждого клиента выдается продукт/услуга, которые являются для него наиболее востребованными. Такой способ эффективнее классических методов Cross-Sell и хорошо подходит для реализации концепции Next Best Offer в условиях широкого спектра предлагаемых продуктов и услуг. Этот метод особенно понравится тем, у кого нет возможности построить отдельные модели Up-Sell для каждого продукта.

>Согласно прогнозам компании IDC, объем продаж Hadoop к 2016 году достигнет $812,8 млн при среднегодовом темпе роста 60,2 %. Эксперты SAS уверены, что заказчики и в дальнейшем продолжат использовать эту архитектуру хранения больших данных с целью их анализа и получения скрытой в них ценнейшей информации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *